A Deep Learning Methodology for Semantic Utterance Classification in Virtual Human Dialogue Systems
نویسندگان
چکیده
This paper describes the development of a deep learning methodology for semantic utterance classification (SUC) for use in domainspecific dialogue systems. Semantic classifiers need to account for a variety of instances where the utterance for the semantic domain class varies. In order to capture the candidate relationships between the semantic class and the word sequence in an utterance, we have proposed a shallow convolutional neural network (CNN) along with a recurrent neural network (RNN) that uses domain-specific word embeddings which have been initialized using Word2Vec for determining semantic similarity of words. Experimental results demonstrate the effectiveness of shallow neural networks for SUC.
منابع مشابه
Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملZero-Shot Learning and Clustering for Semantic Utterance Classification
We propose two novel zero-shot learning methods for semantic utterance classification (SUC) using deep learning. Both approaches rely on learning deep semantic embeddings from a large amount of Query Click Log data obtained from a search engine. Traditional semantic utterance classification systems require large amounts of labelled data, whereas our proposed methods make use of the structure of...
متن کاملAutomatic Utterance Segmentation in Instant Messaging Dialogue
Instant Messaging (IM) chat sessions are real-time, text-based conversations which can be analyzed using dialogue-act models. Dialogue acts represent the semantic information of an utterance, however, messages must be segmented into utterances before classification can take place. We describe and compare two statistical methods for automatic utterance segmentation and dialogue-act classificatio...
متن کاملInformation Extraction Tools and Methods for Understanding Dialogue in a Companion
This paper discusses how Information Extraction is used to understand and manage Dialogue in the EU-funded Companions project. This will be discussed with respect to the Senior Companion, one of two applications under development in the EU-funded Companions project. Over the last few years, research in human-computer dialogue systems has increased and much attention has focused on applying lear...
متن کاملNeural Utterance Ranking Model for Conversational Dialogue Systems
In this study, we present our neural utterance ranking (NUR) model, an utterance selection model for conversational dialogue agents. The NUR model ranks candidate utterances with respect to their suitability in relation to a given context using neural networks; in addition, a dialogue system based on the model converses with humans using highly ranked utterances. Specifically, the model process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016